Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis.

نویسندگان

  • Jung Yeop Lee
  • Brian K Janes
  • Karla D Passalacqua
  • Brian F Pfleger
  • Nicholas H Bergman
  • Haichuan Liu
  • Kristina Håkansson
  • Ravindranadh V Somu
  • Courtney C Aldrich
  • Stephen Cendrowski
  • Philip C Hanna
  • David H Sherman
چکیده

The asbABCDEF gene cluster from Bacillus anthracis is responsible for biosynthesis of petrobactin, a catecholate siderophore that functions in both iron acquisition and virulence in a murine model of anthrax. We initiated studies to determine the biosynthetic details of petrobactin assembly based on mutational analysis of the asb operon, identification of accumulated intermediates, and addition of exogenous siderophores to asb mutant strains. As a starting point, in-frame deletions of each of the genes in the asb locus (asbABCDEF) were constructed. The individual mutations resulted in complete abrogation of petrobactin biosynthesis when strains were grown on iron-depleted medium. However, in vitro analysis showed that each asb mutant grew to a very limited extent as vegetative cells in iron-depleted medium. In contrast, none of the B. anthracis asb mutant strains were able to outgrow from spores under the same culture conditions. Provision of exogenous petrobactin was able to rescue the growth defect in each asb mutant strain. Taken together, these data provide compelling evidence that AsbA performs the penultimate step in the biosynthesis of petrobactin, involving condensation of 3,4-dihydroxybenzoyl spermidine with citrate to form 3,4-dihydroxybenzoyl spermidinyl citrate. As a final step, the data reveal that AsbB catalyzes condensation of a second molecule of 3,4-dihydroxybenzoyl spermidine with 3,4-dihydroxybenzoyl spermidinyl citrate to form the mature siderophore. This work sets the stage for detailed biochemical studies with this unique acyl carrier protein-dependent, nonribosomal peptide synthetase-independent biosynthetic system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic analysis of petrobactin transport in Bacillus anthracis.

Iron acquisition mechanisms play an important role in the pathogenesis of many infectious microbes. In Bacillus anthracis, the siderophore petrobactin is required for both growth in iron-depleted conditions and for full virulence of the bacterium. Here we demonstrate the roles of two putative petrobactin binding proteins FatB and FpuA (encoded by GBAA5330 and GBAA4766 respectively) in B. anthra...

متن کامل

Erratum for Hagan et al., “Petrobactin Is Exported from Bacillus anthracis by the RND-Type Exporter ApeX”

Bacillus anthracis-a Gram-positive, spore-forming bacterium-causes anthrax, a highly lethal disease with high bacteremia titers. Such rapid growth requires ample access to nutrients, including iron. However, access to this critical metal is heavily restricted in mammals, which requires B. anthracis to employ petrobactin, an iron-scavenging small molecule known as a siderophore. Petrobactin bios...

متن کامل

Regulation of Petrobactin and Bacillibactin Biosynthesis in Bacillus anthracis under Iron and Oxygen Variation

BACKGROUND Bacillus anthracis produces two catecholate siderophores, petrobactin and bacillibactin, under iron-limited conditions. Here, we investigate how variable iron and oxygen concentrations influence the biosynthetic output of both siderophores in B. anthracis. In addition, we describe the differential levels of transcription of select genes within the B. anthracis siderophore biosyntheti...

متن کامل

Anthrax pathogen evades the mammalian immune system through stealth siderophore production.

Systemic anthrax, caused by inhalation or ingestion of Bacillus anthracis spores, is characterized by rapid microbial growth stages that require iron. Tightly bound and highly regulated in a mammalian host, iron is scarce during an infection. To scavenge iron from its environment, B. anthracis synthesizes by independent pathways two small molecules, the siderophores bacillibactin (BB) and petro...

متن کامل

Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis.

Petrobactin, a virulence-associated siderophore produced by Bacillus anthracis, chelates ferric iron through the rare 3,4-isomer of dihydroxybenzoic acid (3,4-DHBA). Most catechol siderophores, including bacillibactin and enterobactin, use 2,3-DHBA as a biosynthetic subunit. Significantly, siderocalin, a factor involved in human innate immunity, sequesters ferric siderophores bearing the more t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 5  شماره 

صفحات  -

تاریخ انتشار 2007